If you'd like to get in touch, please email me at: [email protected]
Publications
Penguins Don't Fly: Reasoning about Generics through Instantiations and Exceptions
Emily Allaway, Jena D. Hwang, Chandra Bhagavatula, Kathleen McKeown, Doug Downey, Yejin Choi
2023
I2D2: Inductive Knowledge Distillation with NeuroLogic and Self-Imitation
Chandra Bhagavatula, Jena D Hwang, Doug Downey, Ronan Le Bras, Ximing Lu, Keisuke Sakaguchi, Swabha Swayamdipta, Peter West, Yejin Choi
arXiv preprint arXiv:2212.09246, 2022
The Abduction of Sherlock Holmes: A Dataset for Visual Abductive Reasoning
Jack Hessel, Jena D. Hwang, Jae Sung Park, Rowan Zellers, Chandra Bhagavatula, Anna Rohrbach, Kate Saenko, Yejin Choi
arXiv, 2022
Maieutic Prompting: Logically Consistent Reasoning with Recursive Explanations
Jaehun Jung, Lianhui Qin, Sean Welleck, Faeze Brahman, Chandra Bhagavatula, Ronan Le Bras, Yejin Choi
arXiv, 2022
ACCoRD: A Multi-Document Approach to Generating Diverse Descriptions of Scientific Concepts
Sonia K. Murthy, Kyle Lo, Daniel King, Chandra Bhagavatula, Bailey Kuehl, Sophie Johnson, Jonathan Borchardt, Daniel S. Weld, Tom Hope, Doug Downey
arXiv, 2022
Valentina Pyatkin, Jena D Hwang, Vivek Srikumar, Ximing Lu, Liwei Jiang, Yejin Choi, Chandra Bhagavatula
arXiv preprint arXiv:2212.10409, 2022
On-the-Fly Attention Modularization for Neural Generation
Yue Dong, Chandra Bhagavatula, Ximing Lu, Jena D Hwang, Antoine Bosselut, Jackie Chi Kit Cheung, Yejin Choi
ACL-IJCNLP, 2021
“I’m Not Mad”: Commonsense Implications of Negation and Contradiction
Liwei Jiang, Antoine Bosselut, Chandra Bhagavatula, Yejin Choi
NAACL-HLT, 2021
Delphi: Towards machine ethics and norms
Liwei Jiang, Jena D Hwang, Chandra Bhagavatula, Ronan Le Bras, Maxwell Forbes, Jon Borchardt, Jenny Liang, Oren Etzioni, Maarten Sap, Yejin Choi
arXiv preprint arXiv:2110.07574, 2021
DEXPERTS: Decoding-Time Controlled Text Generation with Experts and Anti-Experts
Alisa Liu, Maarten Sap, Ximing Lu, Swabha Swayamdipta, Chandra Bhagavatula, Noah A Smith, Yejin Choi
ACL, 2021
UNICORN on RAINBOW: A Universal Commonsense Reasoning Model on a New Multitask Benchmark
Nicholas Lourie, Ronan Le Bras, Chandra Bhagavatula, Yejin Choi
AAAI, 2021
proScript: Partially Ordered Scripts Generation via Pre-trained Language Models
Keisuke Sakaguchi, Chandra Bhagavatula, Ronan Le Bras, Niket Tandon, Peter Clark, Yejin Choi
EMNLP Findings, 2021
CommonsenseQA 2.0: Exposing the Limits of AI through Gamification
Alon Talmor, Ori Yoran, Ronan Le Bras, Chandra Bhagavatula, Yoav Goldberg, Yejin Choi, Jonathan Berant
NeurIPS Datasets and Benchmarks Track, 2021
Symbolic knowledge distillation: from general language models to commonsense models
Peter West, Chandra Bhagavatula, Jack Hessel, Jena D Hwang, Liwei Jiang, Ronan Le Bras, Ximing Lu, Sean Welleck, Yejin Choi
arXiv preprint arXiv:2110.07178, 2021
Reflective Decoding: Beyond Unidirectional Generation with Off-the-Shelf Language Models
Peter West, Ximing Lu, Ari Holtzman, Chandra Bhagavatula, Jena D. Hwang, Yejin Choi
ACL, 2021
Commonsense Knowledge Base Completion with Structural and Semantic Context
Chaitanya Malaviya, Chandra Bhagavatula, Antoine Bosselut, Yejin Choi
AAAI, 2020
Abductive Commonsense Reasoning
Chandra Bhagavatula, Ronan Le Bras, Chaitanya Malaviya, Keisuke Sakaguchi, Ari Holtzman, Hannah Rashkin, Doug Downey, Wen-tau Yih, Yejin Choi
ICLR, 2020
⭐ Outstanding Paper ⭐ WinoGrande: An Adversarial Winograd Schema Challenge at Scale
Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, Yejin Choi
AAAI, 2020
Visual Commonsense Graphs: Reasoning about the Dynamic Context of a Still Image
Jae Sung Park, Chandra Bhagavatula, Roozbeh Mottaghi, Ali Farhadi, Yejin Choi
ECCV ✨ Spotlight ✨ , abs/2004.10796, 2020
Adversarial Filters of Dataset Biases
Ronan Le Bras, Swabha Swayamdipta, Chandra Bhagavatula, Rowan Zellers, Matthew Peters, Ashish Sabharwal, Yejin Choi
ICML, 2020
Thinking Like a Skeptic: Defeasible Inference in Natural Language
Rachel Rudinger, Vered Shwartz, Jena D. Hwang, Chandra Bhagavatula, Maxwell Forbes, Ronan Le Bras, Noah A. Smith, Yejin Choi
EMNLP, 2020
Generative data augmentation for commonsense reasoning
Yiben Yang, Chaitanya Malaviya, Jared Fernandez, Swabha Swayamdipta, Ronan Le Bras, Ji-Ping Wang, Chandra Bhagavatula, Yejin Choi, Doug Downey
EMNLP Findings, 2020
Counterfactual Story Reasoning and Generation
Lianhui Qin, Antoine Bosselut, Ari Holtzman, Chandra Bhagavatula, Elizabeth Clark, Yejin Choi
EMNLP, 2019
Cosmos QA: Machine Reading Comprehension with Contextual Commonsense Reasoning
Lifu Huang, Ronan Le Bras, Chandra Bhagavatula, Yejin Choi
EMNLP, 2019
ATOMIC: An Atlas of Machine Commonsense for If-Then Reasoning
Maarten Sap, Ronan Le Bras, Emily Allaway, Chandra Bhagavatula, Nicholas Lourie, Hannah Rashkin, Brendan Roof, Noah A. Smith, Yejin Choi
AAAI, 2019
Content-Based Citation Recommendation
Chandra Bhagavatula, Sergey Feldman, Russell Power, Waleed Ammar
NAACL, vol. 1, 2018
Construction of the Literature Graph in Semantic Scholar
Waleed Ammar, Dirk Groeneveld, Chandra Bhagavatula, Iz Beltagy, Miles Crawford, Doug Downey, Jason Dunkelberger, Ahmed Elgohary, Sergey Feldman, Vu Ha, Rodney Kinney, Sebastian Kohlmeier, Kyle Lo, Tyler Murray, Hsu-Han Ooi, Matthew E. Peters, Joanna Power, Sam Skjonsberg, Lucy Lu Wang, Chris Wilhelm, Zheng Yuan, Madeleine van Zuylen, Oren Etzioni
NAACL, 2018
Ontology alignment in the biomedical domain using entity definitions and context
Lucy Lu Wang, Chandra Bhagavatula, Mark Neumann, Kyle Lo, Chris Wilhelm, Waleed Ammar
BioNLP Workshop, ACL, 2018
Waleed Ammar, Matthew Peters, Chandra Bhagavatula, Russell Power
SemEval, 2017
Semi-supervised sequence tagging with bidirectional language models
Matthew E. Peters, Waleed Ammar, Chandra Bhagavatula, Russell Power
ACL, vol. 1, 2017
TabEL: Entity Linking in Web Tables
Chandra Sekhar Bhagavatula, Thanapon Noraset, Doug Downey
ISWC, 2015
Methods for exploring and mining tables on Wikipedia
Chandra Sekhar Bhagavatula, Thanapon Noraset, Doug Downey
KDD, 2013
Press
1. [NYTimes] Can a machine learn morality?
2. [Geekwire] Teaching artificial intelligence right from wrong: New tool from AI2 aims to model ethical judgments
3. [Wired] This Program Can Give AI a Sense of Ethics—Sometimes
4. [Geekwire] Researchers develop new way to help machine-generated language systems reduce toxic language
5. [Science Daily] New test reveals AI still lacks common sense
6. [MIT Technology Review] AI still doesn’t have the common sense to understand human language
7. [Synced] 2020 in Review: 10 AI Papers That Made an Impact
8. Artificial Intelligence (AI) Stats News: AI Augmentation To Create $2.9 Trillion Of Business Value